点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩神app技巧-彩神app
首页>文化频道>要闻>正文

彩神app技巧-彩神app

来源:彩神app开户2022-09-26 17:48

  

家庭防疫消毒慎用紫外线设备******

  消毒是阻断病毒传播的有效方式之一。近日,随着新冠病毒感染者居家隔离人数的增多,如何有效地消毒成为热议话题。有公众提出,紫外线消毒杀菌率高达99%,用于降低新冠病毒传染致病性0.3秒的时间就足够了。

  那么,这种观点是否正确?家庭防疫,用紫外线消毒设备是否靠谱?

  深紫外波段可实现杀菌灭活

  紫外线位于光谱中紫色光之外,为不可见光。在日常生活中,人们经常利用紫外线杀菌消毒,例如在太阳底下晒被子就是典型的利用紫外线消毒的例子。

  中国科学院半导体研究所研究员闫建昌告诉科技日报记者,紫外线可以根据波长,由长到短划分为UVA、UVB、UVC三种波段。由于紫外线的波长与光子能量成反比,因此当紫外线的波长越短时,其光子能量越高,相应的杀菌消毒能力就会越强。

  “UVA波段指波长在320—400纳米的紫外线,平时生活中照射到地表的紫外线,大部分是UVA波段,它有一定的抑制细菌的能力。UVC波段指波长在200—280纳米的紫外线,也被称为深紫外波段,这一波段的紫外线能够破坏细菌或病毒的DNA与RNA链条,使其失去复制或繁殖的能力,从而真正实现有效地杀菌灭活。”闫建昌说。

  闫建昌认为,正确地使用紫外线可以消灭新冠病毒,但0.3秒内即可降低新冠病毒传染致病性,这种说法并不严谨。

  “能否较快较好地消灭病毒,主要是看紫外线的剂量。紫外线的剂量受到紫外线的光功率,即单位面积上光能量大小的影响。同样波长下的紫外线,光功率越高,紫外线的剂量越大,杀菌的时间自然会越短。因此,只有在足够强的光功率下,才有可能实现0.3秒消杀新冠病毒。”闫建昌说。

  中国疾控中心环境所研究员沈瑾也指出,一般情况下,传统的紫外线灯消毒作用时间为半小时,尽管近年来紫外线技术有新的发展,但目前还没有系统的、权威的研究或报道显示,0.3秒的时间就可以达到消毒的效果。

  紫外线消毒灯存在安全隐患

  深紫外波段的紫外线具有较强的杀菌效果。那么在家庭防疫中,用紫外线消毒灯进行消毒是否是一个靠谱的选择?

  原武钢二医院外科主任医师、武汉科技大学医学院外科学兼职教授纪光伟指出,紫外线和其他光一样,沿直线传播,穿透能力较差。如果有遮挡物,紫外线消毒灯的杀菌效果就会大打折扣。同时,紫外线消毒灯还存在安全隐患。深紫外波段能够消灭病毒,也能损害人体细胞。“如果使用不当,可能会灼伤眼睛或皮肤,增加患眼部疾病和皮肤癌的风险。”纪光伟说。

  此外,闫建昌还指出,当紫外线的波长短于240纳米时,会在空气中激发出臭氧,如果没有及时通风,当臭氧达到一定浓度时,会对呼吸道造成损害。目前在民用和工业领域消毒杀菌应用的深紫外光源大多是汞灯,使用汞元素作为核心发光材料。如果意外破损可能会造成汞泄漏,危害人体健康。

  家庭防疫应采取何种消毒方式

  除了紫外线消毒灯,一些家用空气消毒机和手持式的LED消毒器也应用了紫外线杀菌技术。据闫建昌介绍,这两种设备具有相对较高的安全性。

  “应用了紫外线杀菌技术的空气消毒机,其紫外线的作用环境在消毒机内部,不会存在照射到人的风险。同时,这类产品在上市之前,还需要做紫外线泄露的相关检测,能够保证安全性。”闫建昌说,“LED紫外线手持消毒器紫外线的光功率较低,手持的操作方式也相对安全。同时,部分消毒器还具有红外传感等功能,如果检测到人会停止工作。”

  除了紫外线消毒设备外,家庭防疫还可以使用酒精和含氯的消毒液。

  纪光伟告诉记者,75%的酒精可以消灭新冠病毒。日常生活中,可以采用涂抹酒精的方式对物体表面进行消毒。“切忌在空气中喷洒酒精消毒,以免遇火而引起火灾。在使用酒精时,还需要避开明火。”纪光伟说。

  在含氯的消毒液中,较为常见的产品是84消毒液。纪光伟表示,84消毒液以次氯酸钠为主要成分,物表消毒的浓度一般为3%,具体配比要按照说明书进行操作。在配比完成后,最好采用涂抹的方式进行物表消毒,或直接用消毒液拖地。完成消毒后,需要等待一段时间,再用清水擦拭,去除多余的消毒液。

  最后,在居家防疫中,还要避免过度消毒。纪光伟表示,常温条件下新冠病毒在大部分物品表面存活时间较短。在患者居家期间,应加强室内通风,主要做好重点区域,例如共用卫生间和共用物品的消毒。

  “我们生活在一个充满微生物的环境中,除了有害的微生物外,还有一些对我们健康有益的微生物。频繁消毒,会影响家里正常菌群的平衡,甚至导致疾病的发生。”纪光伟说。(记者苏菁菁)

彩神app技巧

静心探索重要的基础科学问题不求“短平快”70后物理学家翁红明******

  翁红明在讲解电子运输理论。

  田春璐摄

  人物简介:

  翁红明,1977年出生,现为中国科学院物理研究所凝聚态理论与材料计算实验室研究员、博士生导师。主要致力于凝聚态物理计算方法和程序的开发以及新奇量子现象的计算研究,成果入选2015年度中国科学十大进展、英国物理学会《物理世界》2015年度十大突破、美国物理学会《物理评论》系列期刊创刊125周年纪念文集等。

  在中科院物理研究所(以下简称“物理所”)的年轻人里,研究员翁红明是小有名气的一位。就在刚刚过去的2022年,他因在数学物理学领域的杰出贡献,获得第四届“科学探索奖”。

  在国际计算凝聚态物理研究领域,翁红明成果颇丰。其中最为人称道的,是他和同事们合作首次在固体中观测到外尔费米子和三重简并费米子的准粒子。这是国际上物理学研究的重要科学突破,对拓扑电子学和量子计算机等颠覆性技术的诞生具有非常重要的意义。

  自由思考、厚积薄发,真正对人类文明有所贡献

  1928年,英国物理学家保罗·狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家赫尔曼·外尔指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量,因而具有确定的手性(指一个物体不能与其镜像相重合,如我们的双手,左手与右手互成镜像,但不能重合)。

  但是80多年过去了,科学家们一直没有能够在实验中观测到外尔费米子。直到2015年1月初,中科院物理所方忠研究员带领的研究组与普林斯顿大学研究小组合作,从理论上预言了在以砷化钽为代表的一批材料中存在着外尔费米子。此后,这个理论预言经过实验得到了进一步验证。

  在研究过程中,翁红明发挥了至关重要的作用。他从发表于1965年的一篇实验文献中受到启发,并通过第一性原理计算,初步认定砷化钽晶体等同结构家族材料可能是无需进行调控的、本征的外尔半金属。这类材料能够合成,没有磁性,没有中心对称,是实验制备、检测都非常便捷的绝佳材料。

  翁红明说:“这一发现的难度在于,从众多材料中找到合适的对象犹如大海捞针,必须对外尔费米子和材料物理特性都有相当认识才行。”

  在外尔费米子被发现的一年后,翁红明和同事们又进一步“预言”:在一类具有碳化钨晶体结构的材料中存在三重简并的电子态。

  2017年6月,这个新预言被实验证实,三重简并费米子被首次观测到。这是物理所科研团队继拓扑绝缘体、量子反常霍尔效应、外尔费米子之后,在拓扑物态研究领域取得的又一次重要突破,引起国际物理学界广泛关注。

  成绩源于多年的深耕积累。翁红明很享受在物理所工作的经历:“这无关荣誉,我找到了更感兴趣、更加深入的研究领域和方向。”

  自由思考、厚积薄发,一直是翁红明喜欢的学术氛围。他所追求的不是多发表文章,而是能攀登科学高峰,真正对人类文明有所贡献。

  科研仅靠一个人或一个小组的力量是不够的

  作为理论物理学家,翁红明专攻量子材料的计算和设计。

  物理学通常分成两大类,即理论物理和实验物理。理论物理通过理论推导和公式推算得出的结论被称为“预言”,“预言”必须通过实验验证才能成为国际公认的科学事实。

  在翁红明看来,他接连获得的几次重大发现,都离不开与同事们的通力合作。这,也是他做科研一直特别重视的一点。

  “理论预言、样品制备和实验观测,这三个环节缺一个都不行。”翁红明说,“在当今科学领域细分程度非常高的情况下,科研仅靠一个人或一个小组的力量是不够的。当有重要任务目标时,我们几个小组紧密合作,在理论、样品、实验等环节实现了环环相扣、无缝对接。”

  在许多人的想象中,理论物理学家的工作,就是每天独自埋头在稿纸堆里计算推演,然后坐着冥思苦想、灵光乍现。

  但翁红明认为,计算推演的确要做,思考分析也不可少,但和同行们的交流也非常重要。他每天上班的第一件事就是查看和了解国际上最新的科研进展,然后分析、思考、计算,再把自己的想法跟同事们交流。“很多时候,我的一些想法,或者说突然的一些灵感,其实都是在思考、交流和工作过程当中产生的。”

  “发现三重简并费米子”这一成果,就源于翁红明和石友国、钱天两位同事一次喝咖啡时的思想碰撞。

  物理所的咖啡厅在学术界享有盛誉,不但因为咖啡好喝,也因为常有科研人员汇聚在此畅聊科学、各抒己见,聊着聊着,灵感经常“火花四射”。

  和大家一样,翁红明、石友国和钱天工作之余也喜欢在咖啡厅一聚。翁红明有什么新想法会第一时间告诉他俩;石友国和钱天在实验过程中有什么新发现或疑惑,也会第一时间反馈给翁红明。

  “闲聊中就能交换信息,我们的交流是完全敞开的,毫无保留地让大家知道彼此做了什么。”翁红明说。

  翁红明告诉记者,在科研道路上,自己非常珍视的成功秘诀有两个,一个是注意总结和积累,另一个就是跟别人多交流。

  “目前我努力发展基于大数据和人工智能的凝聚态物质科学研究,其实也是基于这两点考虑,因为所有人的知识积累都体现在这些数据当中。”翁红明说。

  做研究应该抓住一些更新奇、更本质的问题

  1977年,翁红明出生在江苏泰兴一户普通人家。他的父母都是农民,家里还有一个姐姐。

  初中开始,翁红明第一次接触到物理,从此便沉迷其中。“物理让我对周围的世界有了更深入的了解和认识。”翁红明说。

  兴趣是最好的老师。对物理的热爱,指引着翁红明叩开了物理科学的大门。

  1996年,翁红明参加高考。在填报志愿时,他毫不犹豫地将所有的志愿都填上了物理。最终,他如愿被南京大学物理系录取。

  南京大学的物理系在凝聚态物理领域积淀很深。翁红明在这一领域进行相关知识的学习与研究,一学就是9年,直到博士毕业。毕业后,他去了日本的东北大学金属材料研究所做博士后研究,主要研究各种材料的导电性质。

  到日本一年半后,翁红明萌生了转换研究方向的想法。

  “我想要转到计算方法和程序的发展上,这是凝聚态物理领域中一个最基础也是最具有核心竞争力的方向。”翁红明说,“如果想要在这个领域有长远发展,就要在这个方向上有一定的积累。”在他看来,静下心来探索重要的基础科学问题,要比做一些“短平快”研究更有意义。

  想归想,但真正下定决心,翁红明也经过了一番纠结。

  他坦言:“当转到一个更基础的方向,也意味着你在未来的几年甚至是更长的时间里都需要耐得住坐冷板凳。所以必须做好思想准备,去做一些积累性的工作。”

  2008年,翁红明的人生又有了一次重大转折。

  那一年,物理研究所研究员、博士生导师方忠到日本访问交流,翁红明跟他进行了深入的交谈和讨论。

  翁红明告诉记者:“他跟我介绍了当时做的一项很有意思的工作。虽然我那时并没有很深刻的理解,却受到很大的启发——做研究应该抓住一些更新奇、更本质的问题。”

  在方忠的影响下,2010年,翁红明决定回到国内,入职物理研究所,成为方忠团队的一名成员。

  翁红明说:“每个人在一生当中可能会跟很多人交往交谈,但在人生重要转折时刻能够给你启发的却不多。能有这样的机遇去跟方忠老师交流并受到启发,我觉得这是非常宝贵和幸运的。”

  在新的一年里,翁红明说自己有很多研究工作要做,尤其是如何在拓扑电子学器件研究方面取得突破,促使拓扑电子态理论变成可落地应用的技术。而这,需要跟器件和应用等方向的研究人员进行交流和讨论。

  翁红明相信,拓扑时代的黎明时分正在临近。(记者 吴月辉)

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 兔宝宝的2018年:试探并购”

  • “庆新春中华文化之夜”亮相洛杉矶

独家策划

推荐阅读
彩神app开奖结果 广汽新能源AION S正式上市
2024-08-14
彩神app必赚方案挪威画师《指环王》艺术图
2024-03-06
彩神app平台 《神奇乐园历险记》收获好口碑 合家欢冒险动画获亲子观众青睐
2024-07-21
彩神app注册组图:王子文合影仙人掌小脸娇俏 穿白裙戴红帽清纯美艳
2024-07-05
彩神app软件 印尼宣布迁都决定,但还没想好要搬到哪里
2024-04-21
彩神app充值跳台滑雪宋祺武无缘决赛:多给一些时间我们会站在世界顶尖
2024-06-20
彩神app攻略 周一在岸人民币对美元收报6.7350 涨31个基点
2024-02-05
彩神app骗局“庆新春中华文化之夜”亮相洛杉矶
2024-02-16
彩神app返点请迎接宇宙级boss的进攻
2024-01-07
彩神app登录 德甲-科曼助攻格纳布里救主 拜仁1-1险平纽伦堡
2024-09-12
彩神app规则新浪娱乐对话藤冈靛中文流利惊艳全场
2023-12-20
彩神app漏洞哈佛女神这样摆脱低效
2024-09-16
彩神app走势图警犬追捕嫌犯误撞豪猪 脸上被扎200根刺
2024-06-22
彩神app登录 切尔诺贝利核废墟探秘
2024-01-02
彩神app计划群 刚买一年价格掉一半 新能源车为啥转手就尴尬?
2024-09-14
彩神app官网平台大陆航空主管部门已促请台方恢复两岸直航航点
2024-06-17
彩神app客户端千里共婵娟的苏轼苏辙兄弟
2024-07-22
彩神app手机版袁立晒抱宝宝照片引猜测
2024-03-06
彩神app赔率甩开同龄人聪明人用12招
2024-08-29
彩神app网投央行:被选用进行相关新技术的研究
2023-12-03
彩神app玩法 央行将发行2019年版第五套人民币
2023-12-21
彩神app投注华谊兄弟净利亏损12亿 冯小刚需赔近7000万补业绩
2024-08-28
彩神app手机版APP 德甲-科曼助攻格纳布里救主 拜仁1-1险平纽伦堡
2024-09-26
彩神app官方易宪容:三线城市房价如何走
2023-12-05
加载更多
彩神app地图